• Buecher
  • Campus der Otto-von-Guericke-Universität Magdeburg
  • Chemie-Flaschen
  • Drehohrofen
  • G25
  • Halle 15.1
  • HS5
  • ICH Studierende im Labor
  • Lehre
  • Studierende im Labor

Aktuelles

Dr.-Ing. Stefan Hoerner, Preisträger des “Prix européen 2021” Dissertationspreis der Deutsch-Französischen Hochschule

18.01.2021 -

Stefan Hoerner ist Forschungsgruppenleiter am Lehrstuhl für Strömungsmechanik und Strömungstechnik der Otto-von-Guericke-Universität Magdeburg. Mit einem Hintergrund in Maschinenbau und Elektrotechnik promovierte er 2020 in Energie- und Verfahrenstechnik unter gemeinsamer deutsch-französischer Betreuung. In seiner interdisziplinären Arbeit beschäftigt er sich mit neuen Methoden für eine nachhaltige Nutzung der Wasserkraft.

Seine Promotion erfolgte in einem Cotutelle-Verfahren der Otto-von-Guericke-Universität Magdeburg und der Universität Grenoble-Alpes und wurde von Prof. Dr.-Ing. Dominique Thévenin und Prof. Thierry Maître betreut. Das Vorhaben wurde durch ein Stipendium der Rosa-Luxemburg Stiftung Berlin und durch die Deutsch-Französische Universität Saarbrücken unterstützt.

Die Verleihung des Preises findet am 28. Januar 2021 in einer Online Veranstaltung statt.

 

Kurzbeschreibung der Dissertation und ihrer gesellschaftlichen Relevanz:

Eine nachhaltige Entwicklung der Energieversorgung rückt Meeresenergie in den Blickpunkt der Forschung, denn die überfällige Abschaltung thermischer Kraftwerke führt zu erheblichen Herausforderungen. Der volatile Charakter erneuerbarer Energiequellen, wie Sonne und Wind, erfordert große Speicher und Regelenergie, um Erzeugung und Verbrauch zueinander anzupassen.

Wasserkraft kann hier unterstützen, da sie kontinuierlich verfügbar und schnell regelbar ist. Leider sind konventionelle Wasserkraftanlagen keine wirklich nachhaltige Technologie. In meiner Dissertation habe ich deshalb hydrokinetische Turbinen untersucht, die ähnlich einer Windkraftanlage ohne Dämme arbeiten.

Der ökologische Eingriff dieser Anlagen ist gering. Der in der Dissertation untersuchte Anlagentyp zeigt eine im Vergleich hohe Flächennutzungseffizienz. Dies ist bei der Installation von Anlagenparks notwendig, da die Ökosysteme der Küsten und Flüsse, die potentiellen Standorte, bereits stark durch Bebauung und menschliche Nutzung beansprucht werden.

In der Dissertation habe ich den Einsatz von bio-inspirierten flexiblen Turbinenschaufeln untersucht, denn diese Turbinen leiden unter starken Vibrationen, die durch die komplizierte Strömung im Rotor entstehen. Dies kann zu Materialversagen führen und steht einer industriellen Nutzung der Technologie entgegen. Je niedriger die Drehzahl desto stärker werden die Belastungen. Gleichzeitig sinkt aber das Schädigungsrisiko von Fischen und Meeressäugern durch die Rotoren. Durch die Entwicklung von neuen numerischen und experimentellen Verfahren war es möglich die Interaktionen der Strömung mit den Schaufeln detailliert zu untersuchen. Ich konnte zeigen, dass flexible Schaufeln sich, ähnlich einer Schwanzflosse, passiv der Strömung anpassen und sie dabei gleichzeitig kontrollieren.

In Konsequenz konnte die Strukturbelastung entscheidend gesenkt und die Effizienz der Turbine verbessert werden. Flexible Schaufeln können deshalb zu einer nachhaltigeren Nutzung der Wasserkraft und insbesondere von Gezeitenenergie bei hoher Flächeneffizienz beitragen.

Hydrokinetische Turbinen werden, neben anderen Aspekten einer ökologisch verträglichen Wasserkraft, wie zum Beispiel der Ethohydraulik, also der Interaktion von Fischen mit Strömungen, weiterhin ein Fokus meiner Forschung bleiben.  Ein Vorhaben zur weiteren Untersuchung der beschriebenen Turbinen startete in diesem Monat mit einer Förderung der Deutschen Forschungsgemeinschaft. Wir werden in den nächsten 3 Jahren mit zwei Doktorand:innen aus der Strömungsmechanik und der Elektrotechnik neue Möglichkeiten zur Verbesserung von Lebensdauer und Effizienz dieser Turbinen untersuchen und in dem Projekt mit meinen Forschungspartnern aus Grenoble zusammenarbeiten.

 

Quelle:

Stefan Hoerner, Characterization of the fluid-structure interaction on a vertical axis turbine with deformable blades, (2020), Thesis, doi: 10.25673/33025, Otto-von-Guericke-Universität Magdeburg, Fakultät für Verfahrens- und Systemtechnik & Université Grenoble-Alpes, Laboratoire des Écoulements Géophysiques et Industriels

mehr ...

Neuer Institutsleiter am Institut für Verfahrenstechnik ab 01.01.2021

15.01.2021 -

Zum 01.01.2021 hat Prof. Dr. Ir. Berend van Wachem turnusgemäß die Leitung des Instituts für Verfahrenstechnik übernommen. Er löst damit Prof. Dr.-Ing. habil. Andreas Seidel-Morgenstern ab, der in den vergangenen Jahren das Institut geleitet hat.

mehr ...

Schneller Entscheidungen treffen

21.12.2020 -

Jedes Jahr zeichnet die Universität Magdeburg die besten Doktoranden aus. Einer von ihnen ist Dr. Seyed Ali Hosseini. Er studierte Chemie und Verfahrenstechnik im Rahmen eines gemeinsamen Promotionsvorhabens mit der Universität Paris-Saclay. Mit uns sprach er über seine Forschung, warum er sich dafür so engagiert und was die Auszeichnung für ihn bedeutet.

 

Dr. Seyed Ali Hosseini (c) privatDr. Seyed Ali Hosseini (Foto: privat)

Wie würden Sie einem Laien Ihre Forschung erklären?

Die Möglichkeit der Vorhersage des Ergebnisses physikalisch-chemischer Prozesse ist sowohl in der Technik als auch in der Wissenschaft von großer Bedeutung. Angesichts der Komplexität dieser Prozesse und der vielen Parameter ist es in der Regel unmöglich, sie mit einfachen Modellen richtig zu beschreiben. Oftmals müssen sehr komplexe Modelle verwendet werden. Diese sind nicht gerade billig und erfordern viel Zeit beziehungsweise Rechenleistung. Jede einzelne dieser realistischen Simulationen zur Vorhersage des Ergebnisses eines bestimmten Prozesses kann bis zu mehreren Monaten dauern, was bei vielen Anwendungen verständlicherweise nicht akzeptabel ist.

Nehmen wir als Beispiel ein Thema, das auf wachsendes Interesse stößt: numerische Simulationen zur Unterstützung medizinischer Verfahren und möglicherweise zur Unterstützung von Chirurgen bei der Entscheidung über die beste Vorgehensweise. Es liegt auf der Hand, dass es hier ganz wesentlich auf die Zeit ankommt, und ein oder zweimonatige Simulationen sind relativ uninteressant. Daher ist es von größter Bedeutung, weniger kostspielige und effizientere (aber gleichzeitig genaue) Beschreibungen zu entwickeln. Die in der Dissertation entwickelte und vorgestellte Sammlung numerischer Methoden und Algorithmen ermöglicht eine kostengünstigere und weniger zeitaufwändige Modellierung verschiedener physikalisch-chemischer Prozesse.
Illustration of flow field in a patient-specific intra-cranial aneurysm geometry. Simulation performed using ALBORZ by M.Sc. Feng Huang (currently Ph.D. student at the LSS).

Illustration des Strömungsfeldes in einer patientenspezifischen intrakraniellen Aneurysma-Geometrie. Simulation durchgeführt mit ALBORZ von M.Sc. Feng Huang (derzeit Doktorand am LSS).

Welchen Nutzen hat Ihre Forschung für die Menschheit?

Die prädiktive und schnelle Modellierung komplexer Strömungen ist wichtig und betrifft ein sehr breites Anwendungsfeld. Darüber hinaus sind numerische Simulationswerkzeuge aufgrund der erheblich geringeren Kosten zu einer ernsthaften Alternative zu ingenieur und naturwissenschaftlichen Experimenten geworden. Jede neue Methode, die größere und realistischere Simulationen mit vertretbarem Zeit und Kostenaufwand ermöglicht, hilft daher der Grundlagenforschung, ein tieferes Verständnis der Phänomene komplexer Strömungen zu entwickeln und Ingenieuren effizientere Werkzeuge zur Unterstützung des Entwurfs und Entwicklungsprozesses an die Hand geben.
 

Was fasziniert Sie an Ihrem Forschungsgebiet?

Der interessanteste und aufregendste Teil ist, dass dieser noch recht neue Trend bei numerischen Methoden und Algorithmen - der Lattice-Boltzmann-Methode und ihrer vielen Varianten - die Numerik und moderne Herausforderungen auf diesem Gebiet mit grundlegenderen Fragen aus der kinetischen Gastheorie miteinander verbindet. Auch bringt sie grundlegende Fragen wie Hilberts sechstes Problem (Äquivalenz makroskopischer und mesoskopischer Beschreibungen von Materie) wieder ans Licht. Angesichts der Neuartigkeit des Ansatzes und der Tatsache, dass er sich auf mathematische Beschreibungen stützt, die sich grundlegend von makroskopischen Bilanzgleichungen unterscheiden - obwohl sie dasselbe asymptotische Verhalten wiederherstellen -, erschließt er der Forschung darüber hinaus eine neue Sicht auf die verschiedenen Ansätze zur Beschreibung von Strömungen sowie deren Folgen und Grenzen. Das ist meines Erachtens eine Perspektive, die anderen Arbeitsgruppen der numerischen Methodenforschung fehlt.

Warum forschen Sie auf diesem Gebiet? 

Auch wenn der Schwerpunkt des größten Teils meiner Arbeit in den letzten drei bis vier Jahren auf numerischen Methoden und Werkzeugen für eine Vielzahl von Anwendungen lag, richtet sich mein Interesse auf grundlegendere beziehungsweise theoretischere Fragen, die mit der korrekten Beschreibung von Strömungen auf verschiedenen Ebenen verbunden sind - insbesondere die mesoskopische Ebene, die sich auf eine probabilistische Beschreibung stützt, wie sie von Maxwell und Boltzmann vorgestellt wurde. Ich hoffe, dass mir die Anwendung derartiger Konzepte in anwendungsorientierten Umgebungen ein besseres Verständnis der Beziehung zwischen der makroskopischen „beobachtbaren“ Welt und probabilistischen Beschreibungsmodellen ermöglichen wird.

Welche Erkenntnis hat Sie bisher am meisten überrascht?

Wissen ist relativ, unabhängig von der eigenen Erfahrung und der Anzahl der Jahre, die man mit einem bestimmten Forschungsthema verbracht hat.

Was bedeutet die Auszeichnung für Sie? 

Es ist mir eine Ehre, von der Fakultät und der Universität für meine Doktorarbeit gewürdigt zu werden. Ich bin für diese Auszeichnung sehr dankbar, zumal ich die äußerst interessante Forschungsarbeit anderer Kollegen in unserer Abteilung, aber auch in anderen Fakultäten kenne.

Wie geht es für Sie weiter? 

Zurzeit bin ich Postdoktorand am Departement Maschinenbau und Verfahrenstechnik der ETH in ZürichIch setze meine Arbeit und die Entwicklung von numerischen Methoden für komplexe Strömungen mit Schwerpunkt auf mehrphasigen (flüssigen/gasförmigen) und kompressiblen Strömungen fort.

Illustration of flow inside a swirled burner (Preccinsta burner). Simulation performed using ALBORZ.

Darstellung der Strömung im Inneren eines Drallbrenners (Preccinsta-Brenner). Simulation durchgeführt mit ALBORZ.

mehr ...

Zum 80. Geburtstag einen Baum gepflanzt

16.12.2020 -

Pflanze in deinem Leben mindestens einmal einen Baum – diesem Motto entsprechend schenkten Mitarbeiterinnen und Mitarbeiter von Prof. Dr.-Ing. Dr. h.c. Lothar Mörl vom Institut für Apparate- und Umwelttechnik, ihm zu seinem 80. Geburtstag einen Baum, den er  auf der Wiese vom dem Gebäude 16 pflanzte.

Seit inzwischen fast 60 Jahren gehört Lothar Mörl zur Universität Magdeburg. 1961 begann er hier sein Studium „Chemisches Apparatewesen“. In seiner jahrzehntelangen Forschungs- und Lehrarbeit ging es um Verfahren und Apparate für Wärme- und Stofftransportprozesse. Dabei stand die Wirbelschichttechnik, beispielsweise Trocknung, Röstung, Granulation oder Coating von körnigen Gütern, im Vordergrund. Die umweltfreundliche Behandlung von dispersen Gütern in mit überhitztem Wasserdampf betriebenen Wirbelschichten, wie zum Beispiel die Entfernung von Lösungsmitteln oder die Gewinnung von ätherischen Ölen aus nachwachsenden Rohstoffen gehörten ebenfalls zu seinen Forschungsthemen.

Mörl1


Sein Wissen gab er an Generationen von Studierenden und zahlreiche Promovenden, auch noch lange nach seiner Pensionierung, mit viel Engagement weiter.

Quelle: OVGU-Newsletter

mehr ...

[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 vor

Letzte Änderung: 18.05.2020 - Ansprechpartner: Dipl.-Wirtsch.-Ing. (FH) Manuela Dullin-Viehweg